while measuring acceleration due to gravity with simple pendulum if percentage errors in the measurement of length and time period are 2% and 1% respectively, then maximum percentage error in the measurement of acceleration due to gravity is
Mohammed
Guys, does anyone know the answer?
get while measuring acceleration due to gravity with simple pendulum if percentage errors in the measurement of length and time period are 2% and 1% respectively, then maximum percentage error in the measurement of acceleration due to gravity is from screen.
The percentage errors in the measurement of length and time period of a simple pendulum are 1% and 2% respectively. Then, the maximum error in the measurement of the acceleration due to gravity is
The percentage errors in the measurement of length and time period of a simple pendulum are 1% and 2% respectively. Then, the maximum error in the measurement of the acceleration due to gravity is
Byju's Answer Standard XII Physics
Finding Significant Figures
The percentag... Question
The percentage errors in the measurement of length and time period of a simple pendulum are 1%and2% respectively. Then, the maximum error in the measurement of the acceleration due to gravity is
A 8% B 3% C 4% D 6% E 5% Open in App Solution
The correct option is E
5%
Step 1: Given Data:The percentage errors in the measurement of length=1%
The percentage errors in the measurement of the time period=2%
Step 2: Formula Used:Timeperiod(T)=2πlg, where g is the acceleration due to gravity
Step 3: Calculating the maximum error in the measurement of the acceleration due to gravity:The time period of a simple pendulum is given by-
Timeperiod(T)=2πlg ΔTT=12(Δll−Δgg) Δgg=Δll−2ΔTT
Maximum percentage error in the measurement of the acceleration due to gravity is-
Δgg×100=Δll×100+2ΔTT×100
=1×100+2×2×100 =5×100=5%
Hence option E is the correct answer.Suggest Corrections 3 SIMILAR QUESTIONS
Q.The percentage errors in the measurements of the length of a simple pendulum and its time period are 3% and 5% respectively. The maximum error in the value of the acceleration due to gravity obtained from these measurements is
Q. Lengthl
and Acceleration due to gravity
g are measured with ± 6 % and ± 4 %
errors respectively. The percentage error in determination of the Time period of a simple pendulum will be,
Q. The acceleration due to gravity is measured by using simple pendulum . If 'a ' and 'b' are relative errors in me?surement of length and time period respectively then percentage error in the measurement of acceleration due to gravity will be??Q. The acceleration due to gravity is measured on the surface of earth by using a simple pendulum. If Alfa and beta are relative errors in the measurement of length and time period respectively, then percentage error in the measurement of acceleration due to gravity is?Q. In an experiment to determine acceleration due to gravity by simple pendulum, a student commits 1 % positive error in the measurement of length and 3% negative error in the measurement of time period. The percentage error in the value of will be :View More
The percentage errors in the measurement of length and time period of a simple pendulum are 1
Click here👆to get an answer to your question ✍️ The percentage errors in the measurement of length and time period of a simple pendulum are 1
Question
The percentage errors in the measurement of length and time period of a simple pendulum are 1% and 2% respectively. Then, the maximum error in the measurement of acceleration due to gravity is:
A3%
B4%
C6%
D5%
Medium Open in App Solution Verified by Toppr
Correct option is D)
Was this answer helpful?
93 23
The percentage errors in the measurement of length and time period of a simple pendulum are 1% and 2% respectively. Then, the maximum error in the measurement of acceleration due to gravity is
Time period of simple pendulum is T=2pisqrt((l)/(g)) or (DeltaT)/(T)==(1)/(2)((Deltal)/(l)-(Deltag)/(g)) implies(Deltag)/(g)=(Deltal)/(l)-(2DeltaT)/(l) therefore Maximum percentage error in g, (Deltag)/(g)xx100=(Deltal)/(l)xx100+(2DeltaT)/(T)xx100 =1xx100+2xx2xx100=5xx100=5%
Home > English > Class 12 > Physics > Chapter > Practice Set 10 >
The percentage errors in the m...
The percentage errors in the measurement of length and time period of a simple pendulum are 1% and 2% respectively. Then, the maximum error in the measurement of acceleration due to gravity is
Updated On: 27-06-2022
( 00 : 22 ) ADVERTISEMENT Text Solution Open Answer in App A 0.08 B 0.03 C 0.04 D 0.05 Answer
The correct Answer is D
Solution
Time period of simple pendulum is
`T=2pisqrt((l)/(g))` or `(DeltaT)/(T)==(1)/(2)((Deltal)/(l)-(Deltag)/(g))`
`implies(Deltag)/(g)=(Deltal)/(l)-(2DeltaT)/(l)`
`therefore` Maximum percentage error in g,
`(Deltag)/(g)xx100=(Deltal)/(l)xx100+(2DeltaT)/(T)xx100`
`=1xx100+2xx2xx100=5xx100=5%`
Answer
Step by step solution by experts to help you in doubt clearance & scoring excellent marks in exams.
Related Videos
320283492 300 7.9 K 2:08
The percentage errors in the measurement of length and time period of a simple pendulum are
1%and2% 1%and2%
respectively. Then find the maximum error in the measurement of acceleration due to gravity.
320268864 14 9.1 K 2:36
The percentage errors in the measurement of length and time period of a simple pendulum are
2%and3% 2%and3%
respectively. Then find the maximum error in the measurement of acceleration due to gravity.
644774848 18 4.6 K 1:53
The percentage erros in the measurement of length and time period of a simple pendulumare are 1% and 2% respectively. Then the maximum error in the measurement of acceleration due to gravity is
320268907 2 6.8 K 2:36
The percentage errors in the measurement of length and time period of a simple pendulum are
3%and6% 3%and6%
respectively. Then find the maximum error in the measurement of acceleration due to gravity.
415572660 40 6.6 K 2:51
Acceleration due to gravity is to be measured using simple pendulum. If a and b are percentage errors in the measurement of length and time period respectively, then percentage error in the measurement of acceleration due to gravity is
644160777 2 7.3 K
In case od measurement of 'g', if error measurement of length of pendulum is
2% 2%
, the percentage error in time period is
1% 1%
. The maximum error in measurement of g is
Show More ADVERTISEMENT Follow Us:
Popular Chapters by Class:
Class 6 Algebra
Basic Geometrical Ideas
Data Handling Decimals Fractions Class 7
Algebraic Expressions
Comparing Quantities
Congruence of Triangles
Data Handling
Exponents and Powers
Class 8
Algebraic Expressions and Identities
Comparing Quantities
Cubes and Cube Roots
Data Handling
Direct and Inverse Proportions
Class 9
Areas of Parallelograms and Triangles
Circles Coordinate Geometry Herons Formula
Introduction to Euclids Geometry
Class 10
Areas Related to Circles
Arithmetic Progressions
Circles Coordinate Geometry
Introduction to Trigonometry
Class 11 Binomial Theorem
Complex Numbers and Quadratic Equations
Conic Sections
Introduction to Three Dimensional Geometry
Limits and Derivatives
Class 12
Application of Derivatives
Application of Integrals
Continuity and Differentiability
Determinants
Differential Equations
Privacy Policy
Terms And Conditions
Disclosure Policy Contact Us
Guys, does anyone know the answer?